The Expressive Power of Modal Dependence Logic
نویسندگان
چکیده
We study the expressive power of various modal logics with team semantics. We show that exactly the properties of teams that are downward closed and closed under team k-bisimulation, for some finite k, are definable in modal logic extended with intuitionistic disjunction. Furthermore, we show that the expressive power of modal logic with intuitionistic disjunction and extended modal dependence logic coincide. Finally we establish that any translation from extended modal dependence logic into modal logic with intuitionistic disjunction increases the size of some formulas exponentially.
منابع مشابه
A Van Benthem Theorem for Modal Team Semantics
The famous van Benthem theorem states that modal logic corresponds exactly to the fragment of first-order logic that is invariant under bisimulation. In this article we prove an exact analogue of this theorem in the framework of modal dependence logic MDL and team semantics. We show that modal team logic MTL, extending MDL by classical negation, captures exactly the FO-definable bisimulation in...
متن کاملModal Independence Logic
This paper introduces modal independence logic MIL, a modal logic that can explicitly talk about independence among propositional variables. Formulas of MIL are not evaluated in worlds but in sets of worlds, so called teams. In this vein, MIL can be seen as a variant of Väänänen’s modal dependence logic MDL. We show that MIL embeds MDL and is strictly more expressive. However, on singleton team...
متن کاملOn the Expressive Power of Modal Logics on Trees
Various logical languages are compared regarding their expressive power with respect to models consisting of nitely bounded branching in nite trees The basic multimodal logic with backward and forward necessity operators is equivalent to restricted rst order logic by adding the binary temporal operators since and until we get the expressive power of rst order logic on trees Hence restricted pro...
متن کاملDependence logic with a majority quantifier
We study the extension of dependence logic D by a majority quantifier M over finite structures. Dependence logic [19] extends first-order logic by dependence atomic formulas =(t1, . . . , tn) the intuitive meaning of which is that the value of the term tn is completely determined by the values of t1, . . . , tn−1. While in first-order logic the order of quantifiers solely determines the depende...
متن کاملA Characterization Theorem for a Modal Description Logic
Modal description logics feature modalities that capture dependence of knowledge on parameters such as time, place, or the information state of agents. E.g., the logic S5ALC combines the standard description logic ALC with an S5-modality that can be understood as an epistemic operator or as representing (undirected) change. This logic embeds into a corresponding modal first-order logic S5FOL. W...
متن کامل